Russian-speaking
 Python & Zope User Group

Главная |  Python |  Zope  

Python
Zope
Новости
Copyright
Ответственность  

По моему мнению, фундаментальной проблемой большинства нейронных сетей является следующая их особенность, присущая также программам, основывающимся на принципе искусственного интеллекта. И программы, базирующиеся на принципах искусственного интеллекта, и нейронные сети отягощены акцентом на поведении. Называют ли его «ответами», «моделями» или «выходными сигналами», предполагается, что именно в поведении, моделируемом НС или ИИ, заключается их «разумность». Об успешности компьютерной программы или нейронной сети судят по тому, выдает она правильный или желаемый выходной сигнал. Со времен Алана Тьюринга между интеллектом и поведением ставят знак равенства.

Но интеллект – это не просто разумный способ действий или разумное поведение. Действительно, поведение является проявлением интеллекта, но ни в коем случае не его ключевой характеристикой и не основным аспектом определения данного понятия. Это легко доказать в одно мгновение: вы остаетесь разумным, лежа в полной темноте, размышляя и осознавая себя самого и окружающий мир. Отрицая важность того, что происходит у вас в голове, и сосредоточиваясь, наоборот, на видимом поведении, ученые создали себе непреодолимое препятствие на пути познания человеческого интеллекта и создания по-настоящему разумных машин.

Прежде чем мы сформулируем новое определение интеллекта, я хочу рассказать вам о другом, коннекционистском, подходе, последователи которого подошли к пониманию работы мозга гораздо ближе. Основная проблема состоит в том, что важность указанного направления познания осознают лишь немногие ученые.

В то время как нейронные сети попали в центр внимания исследователей, небольшая отколовшаяся группа теоретиков разработала НС, положив в ее основу не поведение. Изобретение, названное автоассоциативной памятью, также состояло из простых «нейронов», сообщающихся друг с другом и генерирующих возбуждение при достижении определенного порога. В отличие от нейронных сетей предыдущих поколений (в которых информация проходила только в одном направлении) нейроны автоасссоциативной памяти были соединены большим числом обратных связей. Каждый выходящий сигнал в таких сетях преобразовывался в исходящий – как в телефонном разговоре. Благодаря этой цепи обратных связей ученые получили возможность наблюдать ряд интересных моментов.

Усвоив определенную модель активности, искусственные нейроны запомнили ее. Автоассоциативная сеть ассоциировала модели сами с собой, отсюда ее название – автоассоциативная память.

Результат подобной связи, на первый взгляд, может показаться смехотворным. Для воспроизведения модели, сохраненной в такой памяти, следовало предоставить указанную модель. Проиллюстрирую данный вывод наглядным примером. Допустим, вы пришли в магазин с намерением купить связку бананов. Когда продавец просит вас оплатить покупку, вы говорите ему, что расплатитесь… бананами. «Что же ценного тогда в этом открытии?» – спросите вы. А то, что автоассоциативная память обладает несколькими важными особенностями, присущими головному мозгу человека. Самая важная из них такова: нет необходимости предъявлять системе целую модель, которую вы желаете получить от нее, – достаточно ее фрагмента или видоизмененной по сравнению с желаемой модели. Автоассоциативная память способна воспроизвести сохраненную модель в неизмененном виде, даже если все, что у вас есть в наличии, – ее искаженный вариант.

Вернемся к нашему примеру. Представьте, что вы приходите в магазин с несколькими надкушенными бананами и получаете взамен целую связку. Или обращаетесь в банк с просьбой обменять надорванный и испорченный чек, и ваше желание удовлетворяют: вы получаете новенький, хрустящий документ.

В отличие от большинства нейронных сетей автоассоциативная память может быть разработана таким образом, что будет сохранять целые последовательности моделей, или временные паттерны. Такая ее особенность достигается путем добавления временной задержки к обратной связи. Благодаря этой задержке вы можете предоставлять автоассоциативной памяти последовательности моделей (что подобно звучанию мелодии), и она будет сохранять их.

Таким образом, я могу предоставить автоассоциативной памяти первые несколько нот песни Twinkle Twinkle Little Star, а система воспроизведет ее целиком. Имея в наличии лишь часть усвоенной последовательности, автоассоциативная память воссоздаст ее всю.

Как мы увидим ниже, именно таким способом обучаются люди – усваивая последовательности паттернов. И я предполагаю, что мозг использует эти цепи подобно тому, как это происходит в автоассоциативной памяти.

Принцип действия автоассоциативной памяти навел нас на мысль о потенциальном значении обратной связи и изменяющихся во времени входящих сигналов. Но в подавляющем большинстве машин, обладающих искусственным интеллектом, и в нейронных сетях фактору времени и обратной связи не придается должного значения. Подобную ошибку допускают и специалисты, практикующие в области когнитивной психологии.

Немногим отличаются от них ученые, занимающиеся проблемами головного мозга (нейробиологи, нейрологи). Они знают о том, что существует обратная связь (ведь они сами ее и открыли), но не предлагают теории, которая бы шла дальше неопределенных высказываний о «фазах» и «модуляциях» и которая бы демонстрировала существенную роль данного феномена в функционировании головного мозга в целом. Они склонны описывать мозг в терминах локализации тех или иных процессов, но почти не касаются того, в каких случаях и каким образом нейроны взаимодействуют друг с другом.

Это упущение частично объясняется ограниченностью существующих в данное время экспериментальных техник. Одной из наиболее предпочитаемых техник 1990-х годов (как вы помните, «Десятилетия мозга») была техника функционального изображения. Соответствующие механизмы строили изображения мозговой активности у людей. Однако они не были высокочувствительными – не выделяли быстрых изменений. Тогда ученые предложили участникам эксперимента сосредоточиться на единственной задаче: на протяжении довольно длительного времени их просили замереть, как перед объективом фотокамеры, но фиксировалось не изображение их внешности, а мыслей. В результате мы собрали много информации о том, где именно в мозге локализуются зоны, ответственные за решение разных задач, но очень мало знаем о том, какой путь в головном мозге проходят входящие сигналы, отражающие реальность и изменяющиеся во времени.

Техника функционального изображения позволяет нам понять, где именно в головном мозге происходят текущие процессы, но не предоставляет возможность осознать, каким образом мозговая активность меняется на протяжении времени. Ученые хотели бы получить такие данные, но у них нет подходящих методов.

Итак, многие ведущие нейробиологи впадают в так называемое заблуждение входа-выхода. Вы предоставляете системе входящий сигнал и смотрите, что получите на выходе. Диаграммы прохождения информационных потоков в головном мозге показывают, как потоки сигналов поступают вначале в первичные сенсорные зоны мозга (воспринимающие визуальные, звуковые, тактильные, обонятельные и вкусовые сигналы), а затем, посредством обратной связи, отправляют команды к мышцам. Вы чувствуете – и действуете.

Я не утверждаю, что никто из исследователей не уделял внимания факторам времени и обратной связи. В столь обширной сфере практически каждая идея имеет своих приверженцев. В последнее время интерес к проблемам обратной связи, временного фактора и прогностической функции мозга растет. Но акцент на разработке моделей искусственного интеллекта и нейронных сетей привел к тому, что другие подходы обесценились – им уделялось гораздо меньше внимания, чем они того заслуживают.

Страницы:
 
 
Copyright © 2000-2022, Russian-speaking Python & Zope User Group Ответственность